Note

Stoichiometry of the complexes of methyl glycofuranosides with metal ions in aqueous solution

Antti Vesala, Harri Lönnberg, Rainer Käppi, and Jorma Arpalahti Department of Chemistry and Biochemistry, University of Turku, SF-20500 Turku 50 (Finland) (Received September 14th, 1981; accepted for publication, October 5th, 1981)

Complexing of metal ions with carbohydrates and their derivatives in neutral, aqueous solution has received considerable interest recently^{1,2} because of the possible importance of this kind of interaction in a variety of biological processes, including, for example, the binding of cations to cell walls³. Application of ¹H-n.m.r. techniques has given valuable information about the preferential binding-sites in polyols and monosaccharides⁴⁻⁹, whereas data on the stoichiometry of the complexes and the thermodynamics of their formation are scanty 10-14, particularly for complexing with carbohydrates having five-membered rings. Calorimetry of complex formation between methyl glycofuranosides and calcium ions in aqueous solution indicated14 1:1 stoichiometry and confirmed earlier suggestions¹³ of the relative complexing-abilities of various glycofuranosides. We now report on an extension of the calorimetric investigations to other meta. Las having a noble-gas electronic structure. For reference, copper(II) was examined as a typical transition-metal ion and lead(II) as an example of heavy metal ions. Methyl α -D-ribo- (1), β -D-ribo- (2), and α -Dlyxo-furanosides (3), observed to be the most efficient complexing-agents, were chosen as ligands. It should be noted that, with each ligand, the site of complexing is probably different: namely, MeO-1, HO-2, and HO-3 for 1; HO-2, HO-3, and possibly the ring oxygen for 2; and HO-2, HO-3, and HO-5 for 3.

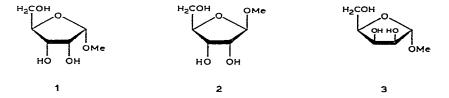


Table I records the enthalpies of interaction [ΔH (int.)] of various metal ions with the methyl glycosides 1–3. Application of Job's method of continuous variation¹⁵ to the data reveals that the complexes of each ligand with the alkaline-earth metal cations are of the 1:1 type (Fig. 1a), in accord with previous observations¹⁴ for Ca²⁺.

NOTE 313

TABLE I enthalpies of interaction [ΔH (int.)] of methyl α -d-ribo-, β -d-ribo-, and α -d-lyxo-furanosides with various inorganic salts in aqueous solution at 298.2 K

ΜXz	$\frac{[M^{z+}]}{(mol.dm^{-3})}$	$\frac{[L]}{(mcl.dm^{-3})}$	$-\Delta H(int.) (mJ)^a$		
			α-Riboside	β-Riboside	α-Lyxoside
MgCl ₂	0.1	0.3	30		10
	0.2	0.2	30	20	20
	0.3	0.1	4		1
CaCl ₂ ^b	0.1	0.3	270	50	100
	0.2	0.2	3 70	80	180
	0.3	0.1	280	50	110
Ca(NO ₃) ₂	0.1	0.3	300	80	130
	0.2	0.2	420	130	190
	0.3	0.1	320	80	140
SrCl ₂	0.1	0.3	230		60
	0.2	0.2	260	50	100
	0.3	0.1	210		80
BaCl ₂	0.1	0.3	260		40
	0.2	0.2	350	60	80
	0.3	0.1	280		50
Y(NO ₃) ₃	0.1	0.3	40	60	50
	0.2	0.2	40	80	80
	0.3	0.1	20	40	40
La(NO ₃) ₃	0.1	0.3	110	100	150
	0.2	0.2	1106	110	2300
	0.3	0.1	100	80	170
Cu(NO ₃) ₂	0.1	0.3	30	30	20
	0.2	0.2	20	50	40
	0.3	0.1	10	30	20
Pb(NO ₃) ₂	0.1	0.3	380	70	100
	0.133	0.267	400	80	120
	0.2	0.2	380	70	90
	0.3	0.1	200	2	30

^aThe enthalpy of mixing of 1.75 cm³ of the solutions given, corrected with respect to the enthalpies of dilution. ^bTaken from ref. 14.

In Fig. 1b, the same method has been applied to the enthalpies of interaction obtained with trivalent cations of yttrium and lanthanum, having the electronic structure of a noble gas, analogous to the cations of alkaline-earth metals. In contrast, a similar treatment of the data for Pb²⁺ suggests that two ligand molecules interact with one cation (Fig. 1c). The enthalpies of interaction with Cu²⁺ are too small to allow any firm conclusions concerning the stoichiometry to be drawn.

It should be noted that the change in ionic strength on going from a 0.05 to a 0.15 mol.dm⁻³ salt solution may affect the stability constants of the metal ion-glycoside complexes and thus the shape of the curves in Fig. 1. Moreover, the interaction of the anions of the salts employed with the complexed metal ion may also

314 NOTE

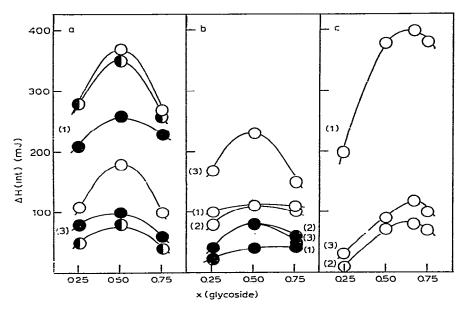


Fig. 1. Enthalpies of interaction [$_{2}$ H(int.)] of methyl $_{\alpha}$ -D-ribo- (1), $_{\beta}$ -D-ribo- (2), and $_{\alpha}$ -D-lyxo-furanosides (3) with various metal ions plotted against the proportion of the glycoside [x(glycoside)] in the mixtures: (a) CaCl₂ (——), SrCl₂ (——), and BaCl₂ (——); (b) La(NO₃)₃ (——) and Y(NO₃)₃ (——); (c) Pb(NO₃)₂.

contribute to the observed enthalpies of interaction. For example, the $\Delta H(\text{int.})$ values obtained with calcium nitrate are ~ 40 mJ more negative than those with calcium chloride. However, we believe that the suggested difference in the stoichtometry of the lead(II) complexes compared to that of the other complexes is real. A possible explanation for this difference is that the complexes of Pb²⁺ (a relatively soft ion) exhibit a considerable degree of covalency, whereas the cations with a noble-gas structure interact with the ligands almost entirely electrostatically.

The calorimetric data presented above also support earlier suggestions concerning the stabilities of various metal ion-carbohydrate complexes^{4,10,13,16}. The enthalpies of interaction of Mg^{2+} with the methyl glycofuranosides are almost negligible, in accord with the proposed instability of its polyol complexes⁴. The other alkaline-earth metal cations exhibit stronger interactions with methyl α -D-riboside than with methyl α -D-lyxoside and methyl β -D-riboside; with each ligand, calcium possesses the greatest tendency for complex-formation. The enthalpy values measured for Pb²⁺ behave similarly and agree with the observation that the lead(II) complexes of free monosaccharides having five-membered rings are approximately of the same stability as the calcium complexes¹⁰. However, with yttrium(III) and lanthanum(III), the interactions with methyl α -D-lyxoside show the most negative enthalpies, most probably reflecting the greatest stability among the complexes. Possible reasons for this change in the complexing order of the ligands have been discussed¹⁶. The low ΔH (int.) values obtained with Cu²⁺ suggest that the 3d transition-metal ions do not

NOTE 315

markedly interact with carbohydrates in aqueous solution. The small size of these ions compared to Ca²⁺, La³⁺, and Pb²⁺ offers a possible explanation for the low complexing-ability. It should be noted that ¹H-n.m.r. data suggest⁴ a considerable destabilisation of the complexes on going from Na⁺ to Li⁺, from Ca²⁺ to Mg²⁺, from Pb²⁺ to Sn²⁺, and from Cd²⁺ to Zn²⁺, *i.e.*, as the ionic radius becomes markedly smaller than 1 Å.

EXPERIMENTAL

Materials. — The methyl glycofuranosides were synthesised as described earlier^{17,18}. The inorganic salts employed were of analytical grade. Their solutions were made in distilled and degassed water.

Calorimetric measurements. — An LKB 10700-2 Batch Microcalorimeter at 298.2 K was used, as described earlier¹⁴.

ACKNOWLEDGMENTS

Financial aid from the Finnish Academy, Division of Sciences, is gratefully acknowledged.

REFERENCES

- 1 S. J. ANGYAL, Chem. Soc. Rev., 9 (1980) 415-428, and references therein.
- 2 N. S. Poonia and A. V. Bajaj, Chem. Rev., 79 (1979) 389-445, and references therein.
- 3 E. I. Ochiai, Bioinorganic Chemistry, An Introduction, Allyn and Bacon, Boston, 1977, ch. 15.
- 4 S. J. ANGYAL, Pure Appl. Chem., 35 (1973) 131-146, and references therein.
- 5 S. J. Angyal, Tetrahedron, 30 (1974) 1695-1702.
- 6 S. J. ANGYAL, D. GREEVES, AND J. A. MILLS, Aust. J. Chem., 27 (1974) 1447-1456.
- 7 S. J. ANGYAL AND R. J. HICKMAN, Aust. J. Chem., 28 (1975) 1279-1287.
- 8 S. J. ANGYAL, D. GREEVES, AND V. A. PICKLES, Carbohydr. Res., 35 (1974) 165-173.
- 9 S. J. ANGYAL AND Y. KONDO, Aust. J. Chem., 33 (1980) 1013-1019.
- 10 L.-G. EKSTRÖM AND Å. OLIN, Acta Chem. Scand., Ser. A, (1977) 838-844.
- 11 W. J. Evans and V. L. Frampton, Carbohydr. Res., 59 (1977) 571-574.
- 12 A. P. G. KIEBOOM, H. M. A. BUURMANS, L. K. VAN LEEUWEN, AND H. J. VAN BENSCHOP, *Recl. Trav. Chim. Pays-Bas*, 98 (1979) 393-394.
- 13 H. LÖNNBERG AND A. VESALA, Carbohydr. Res., 78 (1980) 53-59.
- 14 A. VESALA AND H. LÖNNBERG, Acta Chem. Scand., Ser. A, (1981) 123-126.
- 15 M. T. Beck, Chemistry of Complex Equilibrium, Van Nostrand, Budapest, 1970, p. 86.
- 16 H. LÖNNBERG, A. VESALA, AND R. KÄPPI, Carbohydr. Res., 86 (1980) 137-142.
- 17 H. LÖNNBERG AND A. KULONPÄÄ, Acta Chem. Scand., Ser. A, 31 (1977) 306-312.
- 18 H. LÖNNBERG AND L. VALTONEN, Finn. Chem. Lett., (1978) 209-212.